Abstract No. hans684

In Situ Time-resolved Reduction of CoMoO₄

J.C. Hanson and J.A. Rodriguez (BNL, Chemistry) and J.L. Brito (UCV, Venezuela) Beamline(s): X7B

Introduction: The catalytic activity of metal oxides is often activated by reduction with hydrogen. In general the details of these processes are poorly understood. Of special interest for the reduction of $CoMoO_4$ is the observation of intermediate phases.

Methods and Materials: The samples were reduced by flow of a 5% $H_2/95\%$ He mixture through an in situ reaction cell that allowed for ramps of temperature or isothermal runs. The diffraction patterns were measured with a MAR345 image plate detector.

Results: Figure 1 shows the reduction under H_2 flow during a ramp to 800C and Figure 2 shows that the reduction product can be reoxidized to $CoMoO_4$ by flow of O_2 during a ramp to 700C. Figure 3 show details of ramp to 800C and Figure 4 shows details of an isothermal run at 300C. Different diffraction peaks show up under different temperature variation conditions.

Conclusions: We have observed the reversible reduction/oxidation of CoMoO₄. Different intermediates are observed under different temperature conditions.

Acknowledgments: This work was supported under contract DE-AC02-98CH10886 with the US DOE Office Basic Energy Sciences.

